LTR	DESCRIPTION	DATE	APPROVED

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance 4Ω RON, 4-/8-channel $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$ iCMOS multiplexers microcircuit, with an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type
01

Generic
ADG1409-EP

Circuit function

4Ω RON, 4-channel $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$ iCMOS multiplexers
1.2.2 Case outline(s). The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
X	16	JEDEC MO-153-AB	Think Shrink Small Outline Package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

A B C D E
Z

Material
Hot solder dip
Tin-lead plate
Gold plate
Palladium
Gold flash palladium
Other

1.3 Absolute maximum ratings. 1/

Test	Test conditions	Limits			Unit
		$25^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
Continuous current, S or D 3/					
15 V dual supply	$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$	140	85	45	mA max
12 V dual supply	$V_{D D}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	120	75	40	
5 V dual supply	$V_{D D}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$	115	70	40	

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 - Registered and Standard Outlines for Semiconductor Devices
(Copies of these documents are available online at http:/www.jedec.org or from JEDEC - Solid State Technology Association, 3103 North 10th Street, Suite 240-S, Arlington, VA 22201.)

1/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2/ Over voltages at A, EN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.
3/ Guaranteed by design, not subject to production test..

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 3

3. REQUIREMENTS

3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
3.5.3 Terminal function. The terminal function shall be as shown in figure 3.
3.5.4 Truth table. The truth table shall be as shown in figure 4.
3.5.5 Functional block diagram. The functional block diagram shall be as shown in figure 5.
3.5.6 On resistance. The On resistance shall be as shown in figure 6.
3.5.7 Off leakage. The Off leakage shall be as shown in figure 7.
3.5.8 On leakage. The On leakage shall be as shown in figure 8.
3.5.9 Address to output switching times, $\mathrm{t}_{\text {transition. }}$. The address to output switching times, $\mathrm{t}_{\text {transition }}$ shall be as shown in figure 9 .
3.5.10 Break before make time delay, t $_{\text {BBm }}$. The break before make time delay, $\mathrm{t}_{\text {BBM }}$ shall be as shown in figure 10 .
3.5.11 Enable delay, ton (EN), toff (EN). The Enable delay, ton (EN), toff (EN) shall be as shown in figure 11.
3.5.12 Charge Injection. The charge Injection shall be as shown in figure 12.
3.5.13 Off isolation. The Off isolation shall be as shown in figure 13.
3.5.14 Channel to Channel crosstalk. The Channel to Channel crosstalk shall be as shown in figure 14.
3.5.15 Insertion loss. The Insertion loss shall be as shown in figure 15.
3.5.16 THD + Noise. The THD + Noise shall be as shown in figure 16.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. $\mathbf{1 6 2 3 6}$	DWG NO. V62/12652
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions 15 V Dual Supply 2/	Limits						Unit
			$+25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	

Analog switch

Analog signal range					$\mathrm{V}_{\text {SS }}$	$V_{D D}$	V
On Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \text { See FIGURE } 6 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \end{aligned}$	4				Ω
				4.7		6.7	
On resistance match between channels	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	0.2				Ω
				0.78		1.1	
On resistance Flatness	$\mathrm{R}_{\text {FLAt(on) }}$	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	0.5				Ω
				0.72		0.92	

Leakage currents $\left(\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}\right)$

Source off leakage	I_{s} (Off)	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}$; See FIGURE 7	± 0.04			nA
				± 0.2	± 5	
Drain off leakage	ID (Off)	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}$; See FIGURE 7	± 0.04			
				± 0.45	± 30	
Channel On leakage	$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$, See FIGURE 8	± 0.1			
				± 1.5	± 30	

Digital inputs						
Input high voltage	$\mathrm{V}_{\text {IH }}$			2.0		V
Input low voltage	$\mathrm{V}_{\text {IL }}$				0.8	
Input current	I_{NL} or I_{NH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}	± 0.005			$\mu \mathrm{A}$
					± 0.1	
Digital input capacitance	$\mathrm{Cl}_{\text {IN }}$		4			pF

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 5

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 15 V Dual Supply - Continued 2/	Limits						$\begin{gathered} \text { Uni } \\ \mathrm{t} \\ \hline \end{gathered}$
			$+25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
Dynamic characteristics 3/									
Transition time	ttransition	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}, \text { See FIGURE } 9 \end{aligned}$		140	170			240	
Break before Make time delay	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} 35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=10 \mathrm{~V}, \text { See FIGURE } 10 \end{aligned}$		50		19			
	ton (EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}, \text { See FIGURE } 11 \end{aligned}$		100	120			165	
	toff (EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}, \text { See FIGURE } 11 \end{aligned}$		100	120			170	
Charge injection		$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; See FIGURE 12		-50					pC
Off isolation		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} 5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See FIGURE 13		-70					dB
Channel to channel crosstalk		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} 5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See FIGURE 14		-70					dB
Total harmonic distortion, THD + N		$\mathrm{R}_{\mathrm{L}}=110 \Omega, 15 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {, }$ See FIGURE 16		0.025					\%
-3 dB Bandwidth		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} 5 \mathrm{pF}$, See FIGURE 15		115					MHz
Insertion loss		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ See FIGURE 15		0.24					dB
C_{S} (Off)		$\mathrm{f}=1 \mathrm{MHz}$		14					pF
C_{D} (Off)				40					
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$				90					
Power requirements ($\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$)									
	IDD	Digital inputs $=0 \mathrm{~V}$ or V_{DD}		0.002				1	$\mu \mathrm{A}$
		Digital inputs $=5 \mathrm{~V}$		220				420	
	Iss	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$ or V_{DD}		0.002				1	
	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$				± 4.5			± 16.5	V

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 12 V Single Supply 4/	Limits						Unit
			$+25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	

Analog switch

Analog signal range					0	$V_{D D}$	V
On Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; See FIGURE } 6 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$	6				Ω
				8		11.2	
On resistance match between channels	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	0.2				Ω
				0.82		1.1	
On resistance Flatness	Rflat(on)	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to10 V , $\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	1.5				Ω
				2.5		2.8	

Leakage current I_{S} (Off) $\left(\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}\right)$

Source off leakage	Is (Off)	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; See FIGURE 7	± 0.04				nA
				± 0.2		± 5	
Drain off leakage	$I_{\text {D }}$ (Off)	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; See FIGURE 7	± 0.04				
				± 0.45		± 37	
Channel On leakage	$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 10 V , See FIGURE 8	± 0.06				
				± 0.44		± 32	

Digital inputs

Input high voltage	V_{IH}					2.0		
Input low voltage	V_{IL}							0.8
Input current	I_{NL} or I_{NH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}		± 0.005				
Digital input capacitance	C_{IN}					NA		

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 12 V Single Supply - Continued 4/	Limits						Unit
			$+25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
Dynamic characteristics 3/									
Transition time	$t_{\text {transition }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V}, \text { See FIGURE } 9 \end{aligned}$		200					ns
					260			380	
Break before Make time delay	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} 35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} \text {, See FIGURE } 10 \end{aligned}$		90					
						40			
	$\mathrm{t}_{\text {ON }}(\mathrm{EN})$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, See FIGURE } 11 \end{aligned}$		160					
					210			285	
	toff (EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V}, \text { See FIGURE } 11 \end{aligned}$		115					
					145			200	
Charge injection		$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; See FIGURE 12		-12					pC
Off isolation		$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L} 5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See FIGURE 13		-70					dB
Channel to channel crosstalk		$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L} 5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, See FIGURE 14		-70					dB
-3 dB Bandwidth		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} 5 \mathrm{pF}$, See FIGURE 15		72					MHz
Insertion loss		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ See FIGURE 15		0.5					dB
C_{S} (Off)		$\mathrm{f}=1 \mathrm{MHz}$		25					pF
C_{D} (Off)				80					
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$				120					
Power requirement	$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$								
	IDD	Digital inputs $=0 \mathrm{~V}$ or V_{DD}		0.002				1	$\mu \mathrm{A}$
	ldD	Digital inputs $=5 \mathrm{~V}$		220				420	
	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$				5		16.5	V

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 8

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions 5 V Dual Supply 5/	Limits						Unit
			$+25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
Analog switch									
Analog signal range						$V_{\text {SS }}$		$V_{\text {DD }}$	V
On Resistance	Ron	$\begin{aligned} & V_{S}= \pm 4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \text { See FIGURE } 6 \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \end{aligned}$		7	9			12	Ω
On resistance match between channels	$\Delta \mathrm{Ron}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$		0.3	0.78			1.1	Ω
On resistance Flatness	$\mathrm{R}_{\text {flat(on) }}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$		1.5	2.5			3	Ω

Leakage current I_{S} (Off) $\left(\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V}\right)$

Source off leakage	Is (Off)	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; See FIGURE 7	± 0.02				nA
				± 0.2		± 5	
Drain off leakage	ID (Off)	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; See FIGURE 7	± 0.02				
				± 0.45		± 20	
Channel On leakage	$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$, See FIGURE 8	± 0.04				
				± 0.3		± 22	

Input high voltage	$\mathrm{V}_{\text {IH }}$			2.0		V
Input low voltage	$\mathrm{V}_{\text {IL }}$				0.8	
Input current	$\begin{aligned} & \mathrm{I}_{\mathrm{NL}} \text { or } \\ & \mathrm{I}_{\mathrm{NH}} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}	± 0.005			$\mu \mathrm{A}$
					± 0.1	
Digital input capacitance	$\mathrm{Cl}_{\text {IN }}$		5			pF

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. $\mathbf{1 6 2 3 6}$	DWG NO. V62/12652
		REV	PAGE 9

TABLE I. Electrical performance characteristics - Continued. 1/

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
2/ $V_{D D}=+15 \mathrm{~V} \pm 10 \%, V_{S S}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
3/ Guaranteed by design, not subject to production test.
4/ $\quad \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
5/ $\quad \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 10

Case X

DETAIL A

Dimensions					
Symbol	Millimeters		Symbol	Millimeters	
	Min	Max		Min	Max
A		1.20	E	4.30	4.50
A1	0.05	0.15	E1		
b	0.19	0.30	e		
C	0.09	0.20	L	0.45	0.75
D	4.90	5.10			

NOTES:

1. All linear dimensions are in millimeters.
2. Falls within JEDEC MO-15-AB3.

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 11

Case outline X			
Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	AO	16	A1
2	EN	15	GND
3	V SS 4	14	V $_{\text {DD }}$
4	S1A	13	S1B
5	S2A	12	S2B
6	S3A	11	S3B
7	S4A	10	S4B
8	DA	9	DB

FIGURE 2. Terminal connections.

		Case outline X	
Terminal			
No	Mnemonic		
1	A0	Logic control input	
2	EN	Active high digital input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches	
3	$V_{\text {SS }}$	Most negative power supply potential. In single supply applications, it can be connected to ground	
4	S1A	Source terminal 1A. Can be an input or an output.	
5	S2A	Source terminal 2A. Can be an input or an output.	
6	S3A	Source terminal 3A. Can be an input or an output.	
7	S4A	Source terminal 4A. Can be an input or an output.	
8	DA	Drain terminal A. Can be an input or an output.	
9	DB	Drain terminal B. Can be an input or an output.	
10	S4B	Source terminal 4B. Can be an input or an output.	
11	S3B	Source terminal 3B. Can be an input or an output.	
12	S2B	Source terminal 2B. Can be an input or an output.	
13	S1B	Source terminal 1B. Can be an input or an output.	
14	V	MD	
15	GND	Ground positive power supply potential.	
16	A1	Logic control input	

FIGURE 3. Terminal function.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 12

Device type 02			
A1	A0	EN	On Switch Pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

FIGURE 4. Truth table

FIGURE 5. Functional block diagram.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 13

FIGURE 6. On resistance.

FIGURE 7. Off leakage.

FIGURE 8. On leakage.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 14

FIGURE 9. Address to output switching times, ttransition.

FIGURE 10. Break before make time delay, t-tbm.

FIGURE 11. Enable delay, ton (EN), toff (EN).

FIGURE 12. Charge Injection.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 15

FIGURE 13. Off isolation.

FIGURE 14. Channel to Channel crosstalk.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 16

FIGURE 15. Insertion loss.

FIGURE 16. THD + Noise.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 17

4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/12652-01XB	24355	ADG1409SRU-EP-RL7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.
2/ Not available from an approved source of supply.

CAGE code	Source of supply
24355	Analog Devices
	1 Technology Way
	P.O. Box 9106
	Norwood, MA 02062-9106

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/12652
		REV	PAGE 18

